Partitioning Segre varieties and projective spaces
نویسندگان
چکیده
The recent interest both in partitions of finite geometries into other geometric objects and in the classical Segre varieties over finite fields are the background motivation for this paper. More precisely, partitions of Segre varieties into Segre varieties are investigated and the idea of nested partitions is introduced. Other partitions, namely of projective spaces and hyperbolic quadrics, are also studied. ∗ The authors are partially supported by GNSAGA and by the Italian Ministry for University Research and Technology (project: Strutture geometriche, combinatoria e loro applicazioni). Australasian Journal of Combinatorics 25(2002), pp.59–67
منابع مشابه
Representation Stability for Syzygies of Line Bundles on Segre–veronese Varieties
The rational homology groups of the packing complexes are important in algebraic geometry since they control the syzygies of line bundles on projective embeddings of products of projective spaces (Segre–Veronese varieties). These complexes are a common generalization of the multidimensional chessboard complexes and of the matching complexes of complete uniform hypergraphs, whose study has been ...
متن کاملAffinization of Segre products of partial linear spaces
Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...
متن کاملImbrex geometries
We introduce an axiom on strong parapolar spaces of diameter 2, which arises naturally in the framework of Hjelmslev geometries. This way, we characterize the Hjelmslev-Moufang plane and its relatives (line Grassmannians, certain half-spin geometries and Segre geometries). At the same time we provide a more general framework for a lemma of Cohen, which is widely used to study parapolar spaces. ...
متن کاملReal Equivalence of Complex Matrix Pencils and Complex Projections of Real Segre Varieties
Quadratically parametrized maps from a product of real projective spaces to a complex projective space are constructed as the composition of the Segre embedding with a projection. A classification theorem relates equivalence classes of projections to equivalence classes of complex matrix pencils. One low-dimensional case is a family of maps whose images are ruled surfaces in the complex project...
متن کاملOn the Hilbert polynomials and Hilbert series of homogeneous projective varieties
Among all complex projective varieties X →֒ P(V ), the equivarient embeddings of homogeneous varieties—those admitting a transitive action of a semi-simple complex algebraic group G—are the easiest to study. These include projective spaces, Grassmannians, non-singular quadrics, Segre varieties, and Veronese varieties. In Joe Harris’ book “Algebraic Geometry: A First Course” [H], he computes the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 25 شماره
صفحات -
تاریخ انتشار 2002